Ever since the breakthrough discoveries of Watson, Crick, and others in the 1950s made genetic engineering a possibility, the new field has promised increasingly bigger payoffs. These payoffs take the form of improvements to human life and profits to those who facilitate those improvements. The possible applications of genetic engineering are virtually limitless—as are the profits to be made from genetic engineering as a business. As early as the 1970s, entrepreneurs (independent businesspeople) recognized the commercial potential of genetically engineered products, which promised to revolutionize life, technology, and commerce as computers also were doing. Thus was born one of the great buzzwords of the late twentieth century: biotechnology, or the use of genetic engineering for commercial purposes.
Several early biotechnology firms were founded by scientists involved in fundamental research: Boyer, for example, teamed up with the venture capitalist Robert Swanson in 1976 to form Genentech (Genetic Engineering Technology). Other pioneering companies, including Cetus, Biogen, and Genex, likewise were founded through the collaboration of scientists and businesspeople. Today biotechnology promises a revolution in numerous areas, such as agriculture. Recombinant DNA techniques enable scientists to produce plants that are resistant to freezing temperatures, that will take longer to ripen, that will develop their own resistance to pests, and so on. By 1988 scientists had tested more than two dozen kinds of plants engineered to have special properties such as these. Yet no field of biotechnology and genetic engineering is as significant as the applications to health and the cures for diseases.
Medicines and Cures
The use of rDNA allows scientists to produce many products that were previously available only in limited quantities: for example, insulin, which we referred to earlier. Until the 1980s the only source of insulin for people with diabetes came from animals slaughtered for meat and other purposes. The supply was never high enough to meet demand, and this drove up prices. Then, in 1982, the U.S. Food and Drug Administration (FDA) approved the sale of insulin produced by genetically altered organisms—the first such product to become available. Since 1982 several additional products, such as human growth hormone, have been made with rDNA techniques.
One of the most exciting potential applications of genetic engineering is the treatment of genetic disorders, which are discussed in Heredity, through the use of gene therapy. Among the more than 3,000 such disorders, quite a few of which are quite serious or even fatal, many are the result of relatively minor errors in DNA sequencing. Genetic engineering offers the potential to provide individuals with correct copies of a gene, which could make possible a cure for that condition. In the 1980s scientists began clinical trials of a procedure known as human gene therapy to replace defective genes. The technique, still very much in the developmental stage, offers the hope of cures for diseases that medicine has long been powerless to combat.
In 2001 scientists at the Weizmann Institute in Israel brought together two of the most exciting fields of research, biotechnology and computers, to produce the DNA-processing nanocomputer. It is an actual computer, but it is so small that a trillion of them would fit in a test tube. It consists of DNA and DNA-processing enzymes, both dissolved in liquid; thus its input, output, and software are all in the form of DNA molecules. The purpose of the nanocomputer is to analyze DNA, detecting abnormalities in the human body and creating remedies for them.
Sunday, July 5, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment