A clone is a cell, group of cells, or organism that contains genetic information identical to that of the parent cell or organism. It is a form of asexual reproduction (see Reproduction), and as such it is not as new as it seems; what is new, however, is humans' ability to manipulate cloning at the genetic level. The first clones produced by humans as long as 2,000 years ago were plants developed from grafts and stem cuttings. By cloning—a process that calls into play complex laboratory techniques and the use of DNA replication—people usually mean a relatively recent scientific advance. Among these techniques is the ability to isolate and copy (that is, to clone) individual genes that direct an organism's development.
The Promise of Cloning
The cloning of specific genes can provide large numbers of copies of that gene for use in genetic and taxonomic research as well as in the practical areas of medicine and farming. In the latter field, the goal is to clone plants with specific traits that make them superior to naturally occurring organisms. For example, in 1985 scientists conducted field tests using clones of plants whose genes had been altered in the laboratory to generate resistance to insects, viruses, and bacteria. New strains of plants resulting from cloning could produce crops that can grow in poor soil or even underwater and fruits and vegetables with improved nutritional qualities and longer shelf lives. A cloning technique known as twinning could induce livestock to give birth to twins or even triplets, and on the environmental front cloning might help save endangered species from extinction.
In the realm of medicine and health, cloning has been used to make vaccines and hormones. It has become possible, by combining two different kinds of cells (such as mouse and human cancer cells), to produce large quantities of specific antibodies, via the immune system, to fight off disease. When injected into the bloodstream, these cloned antibodies seek out and attack disease-causing cells anywhere in the body. By attaching a tracer element to the cloned antibodies, scientists can locate hidden cancers, and by attaching specific cancer-fighting drugs, the treatment dose can be transported directly to the cancer cells.
Experiments in Cloning
The modern era of laboratory cloning began in 1958 when the British plant physiologist F. C. Steward (1904-1993) cloned carrot plants from mature single cells placed in a nutrient culture containing hormones. The first cloning of animal cells took place in 1964, when the British molecular biologist John B. Gurdon (1933-1989) took nuclei from intestinal cells of toad tadpoles and injected them into unfertilized eggs. The cell nuclei in the eggs had been destroyed with ultra-violet light, but when the eggs were incubated, Gurdon found that 1-2% of the eggs developed into fertile, adult toads.
The first successful cloning of mammals occurred nearly 20 years later, when scientists in Switzerland and the United States successfully cloned mice using a method similar to Gurdon's approach. Their method required one extra step, however: after taking the nuclei from the embryos of one type of mouse, they transferred them into the embryos of another type of mouse. The latter served as a surrogate, or replacement, mother. The cloning of cattle livestock was tried first in 1988, when embryos from prize cows were transplanted to unfertilized cow eggs whose own nuclei had been removed. An even greater breakthrough transpired on February 24, 1997, with the birth of a lamb named Dolly in Edinburgh, Scotland. Dolly was no ordinary sheep: she was the first mammal born from the cloning of an adult cell. Thus, she had been produced by asexual reproduction in the form of genetically engineered cloning rather than by anything resembling a normal process. Nonetheless, she proved her own ability to reproduce the old-fashioned way when, on April 23, 1998, she gave birth to a daughter named Bonnie.
Friday, July 10, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment