Saturday, September 12, 2009

Technology of Genetic Engineering

Genetic engineering requires three fundamental technologies: the ability to isolate and modify the DNA of specific individual genes; an understanding of the mechanisms that regulate how genes function and how these can be manipulated; and the capacity to transfer genes into an organism. These have all been developed following the discovery of the structure of DNA in 1953. Genetic engineering of microbes was first reported in 1973, followed in the next decade by similar achievements in plants and animals. Because DNA is the genetic material in all organisms, genes for genetic engineering can be taken from any source, or even synthesized. Modification of genes may be necessary, particularly in regions that control how they operate, in order for the genes to function effectively in the recipient organism. Agrobacterium tumefaciens, a bacterium that transfers DNA into plant cells as part of its normal life cycle, is used commonly to transfer genes into plants, although other methods such as the "gene gun" also have been developed. Genetically engineered plants are technically "transgenic organisms," as they contain transferred genes. However, they are frequently referred to as "genetically modified organisms," or GMOs, and the products derived from them are described as "genetically modified," or GM foods. These terms can be confusing, as essentially all cultivated plants have been genetically modified through breeding and selection—for example, the many varieties of cultivated onions possess numerous qualities that distinguish them from each other and especially from the wild onions from which they originated.

Application of Genetic Engineering in Agriculture

The first genetically engineered crops were planted on a large scale in 1996. By 2001 more than fifty million hectares were planted worldwide with transgenic crops. The first generation of these crops has been altered in ways that improve the efficiency of crop production by modifying the tolerance of plants to herbicides and insect pests. Broad-spectrum herbicides are able to kill almost all plants. A prerequisite for using chemicals to control weeds in a crop is that the crop itself must be resistant to the herbicide. Genetic engineering has been used to develop plants (specifically soybean, canola, corn, and cotton) with resistance to two broad-spectrum herbicides, glyphosate and glufosinate, which are sold under the trademarks Roundup and Liberty, respectively. Glyphosate-tolerant soybeans have been adopted rapidly in some countries, notably the United States and Argentina, and accounted for approximately 46 percent of the soybean acreage worldwide in 2001. Herbicide use has not declined in these crops but the specific herbicides that are used have changed.

Insect pests can damage crops during the growing season and also after harvest. A variety of methods, including cultural practices and insecticides, are used to control insect damage. Genetic engineering has provided novel approaches to this problem. The bacterium Bacillus thuringiensis (Bt) produces proteins that are toxic to some types of insects, and Bt spores have been used as insecticides for decades. Genes encoding Bt toxin proteins have been isolated, modified so they function in plants, and transferred into crop plants including corn, potato, and cotton. These engineered Bt crops are more resistant to such insects as the European corn borer, Colorado potato beetle, and cotton bollworm than are their nonengineered counterparts. The introduction of Bt cotton has resulted in reduced use of insecticides on this crop in some regions of the United States. Growers of Bt crops are required to plant a portion of their acreage with varieties that do not carry the Bt gene, in an effort to delay the development of insect populations with resistance to Bt toxins.

The Flavr Savr tomato, developed in the 1980s by Calgene, a biotechnology company in California, was the first food produced from a genetically engineered plant. These tomatoes ripened more slowly and had an extended shelf life. However, for a number of reasons—including production problems and consumer skepticism—this product was not a commercial success and was withdrawn in 1996, after less than three years on the market. Melons and raspberries have also been engineered to have delayed ripening but have not been produced commercially. Transgenic papayas with resistance to ring spot virus also have been developed. These were grown successfully in Hawaii, where the papaya industry was devastated by this debilitating disease. A similar approach was used to produce virus-resistant summer squash and against other viruses affecting a wide variety of foodstuffs.

The first generation of transgenic crops for the most part were designed to improve the efficiency of crop production, an ongoing objective for genetic engineers. Additionally, the techniques of genetic engineering can be used to alter the nutritional composition of foods. The transfer into rice of three genes that function to produce beta-carotene in the seed resulted in "golden rice." Once consumed, beta-carotene can be converted to vitamin A, the degree of this conversion being dependent upon a number of factors that relate to the source of the beta-carotene, the diet, and the individual consumer. In less-developed countries, vitamin A deficiency is widespread among those with a restricted diet, and is responsible for increased mortality and blindness in children. Although the efficacy of transgenic rice in reducing disease has not been established, it demonstrates the potential use of genetic engineering for nutritional enhancement in many crops. Other applications of genetic engineering of animal and human foods include removing allergens from foods such as peanuts, increasing the level of essential vitamins and nutrients in foods, and producing foods possessed of vaccines and other beneficial compounds.

Genetically engineered microbes also are used to produce proteins for food processing. Chymosin (or rennin), an enzyme used in cheese production, traditionally is obtained from the stomach of veal calves. However, the gene encoding this enzyme was transferred into microbes, and the enzyme now can be produced in bulk by purifying it from large microbe cultures. Chymosin prepared from transgenic microbes has more predictable properties than the animal product and is used to produce more than fifty percent of hard cheeses in the United States. Other enzymes used in food processing are produced by similar methods. For example, bovine growth hormone (BGH) is produced in large quantities from transgenic microbes and is given to cows to increase milk production.