Genetic engineering owes its existence to the developments in molecular genetics, virology, and cytology that culminated in the determination of the structure of DNA by James Watson and Francis Crick in 1953. Building on research involving bacteriophages (a bacterial virus), Joshua Lederberg, a geneticist at the University of Wisconsin, found that bacteria can transfer genetic information through plasmids, small mobile pieces of DNA that exist independent of the chromosomes. In the 1950s, Lederberg pioneered the earliest techniques in genetic engineering, shuffling genetic material between bacterial cells. After the identification of restriction enzymes capable of "cutting" DNA in specific locations in 1968, scientists were able to insert foreign DNA directly into bacterial cells. The discovery that the foreign DNA would naturally bond with the host DNA, made it possible to splice together genes from multiple organisms, the technique used in recombinant DNA engineering. Although highly complicated, rDNA engineering can be simply explained: genetic material from the donor source is isolated and "cut" using a restriction enzyme and then recombined or "pasted" into the genetic material of the receiver. By 1971, advanced transplantation techniques had been developed and rDNA techniques using the restriction enzyme EcoRi were operable the following year, leading to the first experiments in genetic engineering.
In 1973, Stanford biochemist Stanley Cohen under-took one of the first rDNA experiments, inserting a piece of bacterial DNA into Escherichia coli (E. coli), a bacterium found in the human intestine. However, the research soon became controversial, particularly when American molecular biologist Paul Berg designed an experiment to insert DNA from simian virus #40 (sv40)—a known cancer-causing agent—into E. coli. As word of the daring procedure spread, the public was captivated and fearful, afraid that a genetically engineered virus, inured to antibiotics and carried in a common bacterium, could escape and cause an epidemic. Hoping to diffuse fears of a potential biohazard and maintain control of their research, over one hundred and fifty molecular biologists and related specialists met at the Asilomar Conference Center in Monterey, California, in late February 1975. The conference represented an extraordinary moment in the history of science, as the research community, recognizing its social responsibility, officially adopted a moratorium until appropriately safe procedures and guidelines could be developed. The conference ultimately resulted in the "National Institutes of Health Guidelines for Research Involving rDNA Molecules" and an ongoing National Institute of Health rDNA Advisory Committee (RAC)founded in 1974.
Yet the guidelines only increased public concern over genetic engineering. Critics charged that attempts to splice genes together from different organisms were akin to "playing God" and could result in dangerous and immoral hybrids. Adopting the literary example of "Dr. Frankenstein's monster" as an appropriate symbol of misguided science, opponents of rDNA engineering converged on research laboratories and public meetings. An attempt to build a recombinant laboratory at Harvard University set off such a firestorm that local politicians created a review board to assess potential risks, eventually requiring more stringent controls than those set by the NIH. By 1977, protests of rDNA facilities had spread to other campuses—the University of California San Diego, the University of Wisconsin, the University of Michigan, and the University of Indiana—while the state legislatures of New York, New Jersey, and California held public hearings. However, it was the resolution of an old court case and the introduction of a new form of rDNA engineering that ultimately created the greatest controversy.
In a monumental decision handed down on 16 June 1980, the United States Supreme Court held in Diamond v. Chakrabarty that man-made life forms were subject to patent laws and protection. The decision resolved a longstanding issue on patents and organic material, as the case dated to 1972, when Ananda Chakrabarty, a researcher at General Electric, applied for a patent on a form of Pseudomonas bacteria bred (but not genetically engineered)to digest oil slicks. By a narrow five to four margin the court construed the Patent Act, originally drafted by Thomas Jefferson, so as to include all products of human invention, relying on a 1952 Senate report that recognized as patentable "anything under the sun that is made by man." More than any other single event, the ruling galvanized many mainstream religious communities and environmental groups, eventually resulting in a letter of protest to President Carter and an indepth review by the President's Commission for the Study of Ethical Problems in Medicine and Biomedical and Behavioral Research (1980–1983). The commission's report, issued in 1982 and entitled Splicing Life: The Social and Ethical Issues of Genetic Engineering with Human Beings, emphasized the importance of rDNA engineering to biomedical progress and American industries, arguing that it was best that the research be conducted under the auspices of government regulation and control. However, while the study resolved anxiety over rDNA engineering and patenting, proponents of genetic engineering still had to address concerns over the development of "germ-line" engineering, a controversial procedure that allowed scientists to literally create new strains of organisms.
Germ-line engineering differs from rDNA engineering in that the donor genes are inserted into a "germ," or reproductive cell, thereby permanently altering the genetic makeup of the organism's descendants. For example, in 1982, Ralph Brinster of the University of Pennsylvania Veterinary School inserted the gene that produces rat growth hormone into mouse embryos. The resulting strain of mice, dubbed "super mice" by the press, expressed the gene and thus grew into a substantially larger and more powerful new breed of mouse. Critics of germ-line engineering quickly denounced the technique as immoral and argued it was a form of "anthropomorphic Lamarckism."
Jean-Baptiste de Lamarck, a nineteenth-century French naturalist, had proposed that traits acquired during an organism's lifetime were passed on to its progeny—an idea refuted by Darwinian evolutionary theory. Yet, in germ-line engineering, traits acquired during the organism's lifetime are passed on, but only those traits deemed necessary or desirous by man. Environmental groups also denounced germ-line engineering because of "biosafety" concerns, fearing that genetically engineered species, which would possess a distinct advantage over nonengineered species, could upset the globe's finely tuned ecological systems. However, because most politicians, scientists, and manufacturers believed the potential benefits from rDNA and germ-line engineering outweighed its potential dangers, the protests were overshadowed by the development of a biotechnology industry based on genetic engineering.
Saturday, August 15, 2009
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment